3.426 \(\int \frac {x^5}{(8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=64 \[ \frac {8 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {10 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 \sqrt {c} d^2} \]

[Out]

-10/81*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/d^2/c^(1/2)+8/27*(d*x^3+c)^(1/2)/d^2/(-d*x^3+8*c)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {446, 78, 63, 206} \[ \frac {8 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {10 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 \sqrt {c} d^2} \]

Antiderivative was successfully verified.

[In]

Int[x^5/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(8*Sqrt[c + d*x^3])/(27*d^2*(8*c - d*x^3)) - (10*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*Sqrt[c]*d^2)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{(8 c-d x)^2 \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {8 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{27 d}\\ &=\frac {8 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {10 \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{27 d^2}\\ &=\frac {8 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {10 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 \sqrt {c} d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 63, normalized size = 0.98 \[ -\frac {8 \sqrt {c+d x^3}}{27 d^2 \left (d x^3-8 c\right )}-\frac {10 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 \sqrt {c} d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(-8*Sqrt[c + d*x^3])/(27*d^2*(-8*c + d*x^3)) - (10*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*Sqrt[c]*d^2)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 155, normalized size = 2.42 \[ \left [\frac {5 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {c} \log \left (\frac {d x^{3} - 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 24 \, \sqrt {d x^{3} + c} c}{81 \, {\left (c d^{3} x^{3} - 8 \, c^{2} d^{2}\right )}}, \frac {2 \, {\left (5 \, {\left (d x^{3} - 8 \, c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) - 12 \, \sqrt {d x^{3} + c} c\right )}}{81 \, {\left (c d^{3} x^{3} - 8 \, c^{2} d^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/81*(5*(d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 24*sqrt(d*x^3 +
 c)*c)/(c*d^3*x^3 - 8*c^2*d^2), 2/81*(5*(d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 12*sqr
t(d*x^3 + c)*c)/(c*d^3*x^3 - 8*c^2*d^2)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 58, normalized size = 0.91 \[ \frac {2 \, {\left (\frac {5 \, \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{\sqrt {-c} d} - \frac {12 \, \sqrt {d x^{3} + c}}{{\left (d x^{3} - 8 \, c\right )} d}\right )}}{81 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

2/81*(5*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d) - 12*sqrt(d*x^3 + c)/((d*x^3 - 8*c)*d))/d

________________________________________________________________________________________

maple [C]  time = 0.17, size = 861, normalized size = 13.45 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)

[Out]

8*c/d*(-1/27*(d*x^3+c)^(1/2)/(d*x^3-8*c)/c/d-1/486*I/c^2/d^3*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2
)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)
*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d
*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/
3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(
-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/
2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)
^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+1/27*I/d^4/c*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2
)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)
*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d
*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/
3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(
-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/
2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)
^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

maxima [A]  time = 1.32, size = 67, normalized size = 1.05 \[ \frac {\frac {5 \, \log \left (\frac {\sqrt {d x^{3} + c} - 3 \, \sqrt {c}}{\sqrt {d x^{3} + c} + 3 \, \sqrt {c}}\right )}{\sqrt {c}} - \frac {24 \, \sqrt {d x^{3} + c}}{d x^{3} - 8 \, c}}{81 \, d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

1/81*(5*log((sqrt(d*x^3 + c) - 3*sqrt(c))/(sqrt(d*x^3 + c) + 3*sqrt(c)))/sqrt(c) - 24*sqrt(d*x^3 + c)/(d*x^3 -
 8*c))/d^2

________________________________________________________________________________________

mupad [B]  time = 4.01, size = 72, normalized size = 1.12 \[ \frac {5\,\ln \left (\frac {10\,c+d\,x^3-6\,\sqrt {c}\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3}\right )}{81\,\sqrt {c}\,d^2}+\frac {8\,\sqrt {d\,x^3+c}}{27\,d^2\,\left (8\,c-d\,x^3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)

[Out]

(5*log((10*c + d*x^3 - 6*c^(1/2)*(c + d*x^3)^(1/2))/(8*c - d*x^3)))/(81*c^(1/2)*d^2) + (8*(c + d*x^3)^(1/2))/(
27*d^2*(8*c - d*x^3))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{5}}{\left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**5/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)

________________________________________________________________________________________